Optica Open
Browse

Geometry Dependent Localization of Surface Plasmons on Random Gold Nanoparticle Assemblies

Download (5.58 kB)
Version 2 2025-02-07, 17:00
Version 1 2024-10-16, 16:01
preprint
posted on 2025-02-07, 17:00 authored by Mohammed Fayis Kalady, Johannes Schultz, Kristina Weinel, Daniel Wolf, Axel Lubk
Assemblies of plasmonic nanoparticles (NPs) support hybridized modes of localized surface plasmons (LSPs), which delocalize in geometrically well-ordered arrangements. Here, the hybridization behavior of LSPs in geometrically completely disordered arrangements of Au NPs fabricated by an e-beam synthesis method is studied. Employing electron energy loss spectroscopy in a scanning transmission electron microscope in combination with numerical simulations, the disorder-driven spatial and spectral localization of the coupled LSP modes that depend on the NP thickness is revealed. Below 0.4 nm sample thickness (flat NPs), localization increases towards higher hybridized LSP mode energies. In comparison, above 10 nm thickness, a decrease of localization (an increase of delocalization) with higher mode energies is observed. In the intermediate thickness regime, a transition of the energy dependence of the localization between the two limiting cases, exhibiting a transition mode energy with minimal localization, is observed. This behavior is mainly driven by the energy and thickness dependence of the polarizability of the individual NPs.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC