Optica Open
Browse

Low-loss GHz frequency phononic integrated circuits in Gallium Nitride for compact radio-frequency acoustic wave devices

Download (5.58 kB)
preprint
posted on 2023-05-30, 16:01 authored by Mahmut Bicer, Krishna C Balram
Guiding and manipulating GHz frequency acoustic waves in $\mu$m-scale waveguides and resonators opens up new degrees of freedom to manipulate radio frequency (RF) signals in chip-scale platforms. A critical requirement for enabling high-performance devices is the demonstration of low acoustic dissipation in these highly confined geometries. In this work, we show that gallium nitride (GaN) on silicon carbide (SiC) supports low-loss acoustics by demonstrating acoustic microring resonators with frequency-quality factor ($fQ$) products approaching $4*10^{13}$ Hz at 3.4 GHz. The low dissipation measured exceeds the $fQ$ bound set by the simplified isotropic Akhiezer material damping limit of GaN. We use this low-loss acoustics platform to demonstrate spiral delay lines with on-chip RF delays exceeding 2.5 $\mu$s, corresponding to an equivalent electromagnetic delay of $\approx$ 750 m. Given GaN is a well-established semiconductor with high electron mobility, our work opens up the prospect of engineering traveling wave acoustoelectric interactions in $\mu$m-scale waveguide geometries, with associated implications for chip-scale RF signal processing.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC