Optica Open
Browse
arXiv.svg (5.58 kB)

Low-loss forward and backward surface plasmons in a semiconductor nanowire coated by helical graphene strips

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:44 authored by Vitalii I. Shcherbinin, Volodymyr I. Fesenko, Vladimir R. Tuz
In the long-wavelength approximation, the effective conductivity tensor is introduced for graphene ribbons (strips) placed periodically at the interface between two media. The resulting conducting surface is considered as a coating for semiconductor nanowire. For the hybrid waves of such nanowire the dispersion equations are obtained in explicit form. Two types of surface plasmons are found to exist: (i) the modified surface plasmons, which originate from the ordinary surface plasmons of a graphene-coated semiconductor nanowire, and (ii) the spoof plasmons, which arise on the array of graphene ribbons and may possess forward-wave and backward-wave dispersion. It is revealed that the spoof surface plasmons are low-loss ones, and their frequencies, field-confinement and group velocities can be tuned widely by adjusting the coil angle and width of helical graphene strips.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC