Optica Open
Browse

Low-threshold lasing of optically pumped micropillar lasers with Al$_{0.2}$Ga$_{0.8}$As/Al$_{0.9}$Ga$_{0.1}$As distributed Bragg reflectors

Download (5.58 kB)
preprint
posted on 2023-01-21, 17:02 authored by Ching-Wen Shih, Imad Limame, Sebastian Krüger, Chirag C. Palekar, Aris Koulas-Simos, Daniel Brunner, Stephan Reitzenstein
We report on the design, realization and characterization of optically pumped micropillar lasers with low-absorbing Al$_{0.2}$Ga$_{0.8}$As/Al$_{0.9}$Ga$_{0.1}$As dielectric Bragg reflectors (DBRs) instead of commonly used GaAs/AlGaAs DBRs. A layer of (In, Ga)As quantum dots (QDs) is embedded in the GaAs $\lambda$-cavity of as an active medium. We experimentally study the lasing characteristics of the fabricated micropillars by means of low-temperature photoluminescence with varying pump laser's wavelength between 532 nm and 899 nm. The incorporation of 20% Al content in the DBRs opens an optical pumping window from 700 nm to 820 nm, where the excitation laser light can effectively reach the GaAs cavity above its bandgap, while remaining transparent to the DBRs. This results in a substantially improved pump efficiency, a low lasing threshold, and a high thermal stability. Pump laser wavelengths outside of the engineered spectral window lead to low pump efficiency due to strong absorption by the top DBR, or inefficient excitation of pump-level excitons, respectively. The superiority of the absorption-free modified DBRs is demonstrated by simply switching the pump laser wavelength from 671 nm to 708 nm, which crosses the DBRs absorption edge and drastically reduces the lasing threshold by more than an order of magnitude from (363.5 $\pm$ 18.5) $\mu$W to (12.8 $\pm$ 0.3) $\mu$W.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC