Optica Open
Browse
arXiv.svg (5.58 kB)

Material Gain Concentration Quenching in Organic Dye-Doped Polymer Thin Films

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:58 authored by Florian Vogelbacher, Xue Zhou, Jinhua Huang, Mingzhu Li, Ke-Jian Jiang, Yanlin Song, Karl Unterrainer, Rainer Hainberger
The optimization of material gain in optically pumped dye-doped polymer thin films is an important task in the development of organic solid-state lasers. In this work, we present a theoretical model that accommodates the influence of concentration quenching on material gain and employ it to study the novel dye molecule 2-(4-(bis(4-(tert-butyl)phenyl)amino)benzylidene)malononitrile (PMN) and the well-established dye molecule 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) embedded in poly(methyl methacrylate) (PMMA). Polycarbonate was tested as an alternative host material for PMN. The material gain in these dye-doped polymer thin films was determined by the variable stripe length method. The inclusion of concentration quenching in the material gain expression is able to significantly reduce the overestimation of the gain efficiency inherent to a linear model.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC