Optica Open
Browse
- No file added yet -

Maximal single-frequency electromagnetic response

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:27 authored by Zeyu Kuang, Lang Zhang, Owen D. Miller
Modern nanophotonic and meta-optical devices utilize a tremendous number of structural degrees of freedom to enhance light--matter interactions. A fundamental question is how large such enhancements can be. We develop an analytical framework to derive upper bounds to single-frequency electromagnetic response, across near- and far-field regimes, for any materials, naturally incorporating the tandem effects of material- and radiation-induced losses. Our framework relies on a power-conservation law for the polarization fields induced in any scatterer. It unifies previous theories on optical scattering bounds and reveals new insight for optimal nanophotonic design, with applications including far-field scattering, near-field local-density-of-states engineering, optimal wavefront shaping, and the design of perfect absorbers. Our bounds predict strikingly large minimal thicknesses for arbitrarily patterned perfect absorbers, ranging from 50--100 nm for typical materials at visible wavelengths to micrometer-scale thicknesses for polar dielectrics at infrared wavelengths. We use inverse design to discover metasurface structures approaching the minimum-thickness perfect-absorber bounds.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC