Optica Open
Browse
arXiv.svg (5.58 kB)

Measurements and modeling of atomic-scale sidewall roughness and losses in integrated photonic devices

Download (5.58 kB)
preprint
posted on 2023-01-11, 22:51 authored by Samantha Roberts, Xingchen Ji, Jaime Cardenas, Mateus Corato-Zanarella, Michal Lipson
Atomic-level imperfections play an increasingly critical role in nanophotonic device performance. However, it remains challenging to accurately characterize the sidewall roughness with sub-nanometer resolution and directly correlate this roughness with device performance. We have developed a method that allows us to measure the sidewall roughness of waveguides made of any material (including dielectrics) using the high resolution of atomic force microscopy. We illustrate this method by measuring state-of-the-art photonic devices made of silicon nitride. We compare the roughness of devices fabricated using both DUV photo-lithography and electron-beam lithography for two different etch processes. To correlate roughness with device performance we describe what we call a new Payne-Lacey Bending model, which adds a correction factor to the widely used Payne-Lacey model so that losses in resonators and waveguides with bends can be accurately predicted given the sidewall roughness, waveguide width and bending radii. Having a better way to measure roughness and use it to predict device performance can allow researchers and engineers to optimize fabrication for state-of-the-art photonics using many materials.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC