Optica Open
Browse

Meta-training of diffractive meta-neural networks for super-resolution direction of arrival estimation

Download (5.58 kB)
preprint
posted on 2025-09-10, 16:24 authored by Songtao Yang, Sheng Gao, Chu Wu, Zejia Zhao, Haiou Zhang, Xing Lin
Diffractive neural networks leverage the high-dimensional characteristics of electromagnetic (EM) fields for high-throughput computing. However, the existing architectures face challenges in integrating large-scale multidimensional metasurfaces with precise network training and haven't utilized multidimensional EM field coding scheme for super-resolution sensing. Here, we propose diffractive meta-neural networks (DMNNs) for accurate EM field modulation through metasurfaces, which enable multidimensional multiplexing and coding for multi-task learning and high-throughput super-resolution direction of arrival estimation. DMNN integrates pre-trained mini-metanets to characterize the amplitude and phase responses of meta-atoms across different polarizations and frequencies, with structure parameters inversely designed using the gradient-based meta-training. For wide-field super-resolution angle estimation, the system simultaneously resolves azimuthal and elevational angles through x and y-polarization channels, while the interleaving of frequency-multiplexed angular intervals generates spectral-encoded optical super-oscillations to achieve full-angle high-resolution estimation. Post-processing lightweight electronic neural networks further enhance the performance. Experimental results validate that a three-layer DMNN operating at 27 GHz, 29 GHz, and 31 GHz achieves $\sim7\times$ Rayleigh diffraction-limited angular resolution (0.5$^\circ$), a mean absolute error of 0.048$^\circ$ for two incoherent targets within a $\pm 11.5^\circ$ field of view, and an angular estimation throughput an order of magnitude higher (1917) than that of existing methods. The proposed architecture advances high-dimensional photonic computing systems by utilizing inherent high-parallelism and all-optical coding methods for ultra-high-resolution, high-throughput applications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC