posted on 2023-01-12, 16:04authored byAli Maleki, Avinash Singh, Ahmed Jaber, Wei Cui, Yongbao Xin, Brian T. Sullivan, Robert W. Boyd, Jean-Michel Menard
We present octave-wide bandpass filters in the terahertz (THz) region based on bilayer-metamaterial (BLMM) structures. The passband region has a super-Gaussian shape with a maximum transmittance approaching 70% and a typical stopband rejection of 20 dB. The design is based on a metasurface consisting of a metallic square-hole array deposited on a transparent polymer, which is stacked on top of an identical metasurface with a sub-wavelength separation. The superimposed metasurface structures were designed using finite-difference time-domain (FDTD) simulations and fabricated using a photolithography process. Experimental characterization of these structures between 0.3 to 5.8 THz is performed with a time-domain THz spectroscopy system. Good agreement between experiment and simulation results is observed. We also demonstrate that two superimposed BLMM (2BLMM) devices increase the steepness of the roll-offs to more than 85 dB/octave and enable a superior stopband rejection approaching 40 dB while the maximum transmittance remains above 64%. This work paves the way toward new THz applications, including the detection of THz pulses centered at specific frequencies, and an enhanced time-resolved detection sensitivity towards molecular vibrations that are noise dominated by a strong, off-resonant, driving field.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.