Version 2 2023-06-08, 12:57Version 2 2023-06-08, 12:57
Version 1 2023-01-10, 02:42Version 1 2023-01-10, 02:42
preprint
posted on 2023-06-08, 12:57authored bySaeed Sharif Azadeh, Jason C. C. Mak, Hong Chen, Xianshu Luo, Fu-Der Chen, Hongyao Chua, Frank Weiss, Christopher Alexiev, Andrei Stalmashonak, Youngho Jung, John N. Straguzzi, Guo-Qiang Lo, Wesley D. Sacher, Joyce K. S. Poon
Laser beam scanning is central to many applications, including displays, microscopy, three-dimensional mapping, and quantum information. Reducing the scanners to microchip form factors has spurred the development of very-large-scale photonic integrated circuits of optical phased arrays and focal plane switched arrays. An outstanding challenge remains to simultaneously achieve a compact footprint, broad wavelength operation, and low power consumption. Here, we introduce a laser beam scanner that meets these requirements. Using microcantilevers embedded with silicon nitride nanophotonic circuitry, we demonstrate broadband, one- and two-dimensional steering of light with wavelengths from 410 nm to 700 nm. The microcantilevers have ultracompact ~0.1 mm$^2$ areas, consume ~31 to 46 mW of power, are simple to control, and emit a single light beam. The microcantilevers are monolithically integrated in an active photonic platform on 200-mm silicon wafers. The microcantilever-integrated photonic circuits miniaturize and simplify light projectors to enable versatile, power-efficient, and broadband laser scanner microchips.