Optica Open
Browse

Microring Resonators Coupling Tunability by Heterogeneous 2D Material Integration

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:00 authored by Rishi Maiti, Rohit Hemnani, Rubab Amin, Zhizhen Ma, Mohammad Tahersima, Thomas A. Empante, Hamed Dalir, Ritesh Agarwal, Ludwig Bartels, Volker J. Sorger
Atomically thin 2D materials provide a wide range of basic building blocks with unique properties, making them ideal for heterogeneous integration with a mature chip platform. An understanding the role of excitons in transition metal dichalcogenides in Silicon photonic platform is a prerequisite for advances in optical communication technology, signal processing, and possibly computing. Here we demonstrate passive tunable coupling by integrating few layers of MoTe2 on a micro-ring resonator. We find a TMD-to-rings circumference coverage length ratio to place the ring into critical coupling to be about 10% as determined from the variation of spectral resonance visibility and loss as a function of TMD coverage. Using this TMD ring heterostructure, we further demonstrate a semi-empirical method to determine the index of an unknown TMD material (nMoTe2 of 4.36+.011i) near for telecommunication-relevant wavelength.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC