Optica Open
Browse

Mid-Infrared Hyperspectral Microscopy with Broadband 1-GHz Dual Frequency Combs

Download (5.58 kB)
preprint
posted on 2024-07-04, 16:00 authored by Peter Chang, Ragib Ishrak, Nazanin Hoghooghi, Scott Egbert, Daniel Lesko, Stephanie Swartz, Jens Biegert, Gregory B. Rieker, Rohith Reddy, Scott A. Diddams
Mid-infrared microscopy is an important tool for biological analyses, allowing a direct probe of molecular bonds in their low energy landscape. In addition to the label-free extraction of spectroscopic information, the application of broadband sources can provide a third dimension of chemical specificity. However, to enable widespread deployment, mid-infrared microscopy platforms need to be compact and robust while offering high speed, broad bandwidth and high signal-to-noise ratio (SNR). In this study, we experimentally showcase the integration of a broadband, high-repetition-rate dual-comb spectrometer (DCS) in the mid-infrared range with a scanning microscope. We employ a set of 1-GHz mid-infrared frequency combs, demonstrating their capability for high-speed and broadband hyperspectral imaging of polymers and ovarian tissue. The system covers 1000 $\mathrm{cm^{-1}}$ at $\mathrm{
u_c=2941 \; cm^{-1}}$ with 12.86 kHz spectra acquisition rate and 5 $\mathrm{\mu m}$ spatial resolution. Taken together, our experiments and analysis elucidate the trade-off between bandwidth and speed in DCS as it relates to microscopy. This provides a roadmap for the future advancement and application of high-repetition-rate DCS hyperspectral imaging.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC