Optica Open
Browse

Miniature Multi-Level Optical Memristive Switch Using Phase Change Material

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:23 authored by Hanyu Zhang, Linjie Zhou, Liangjun Lu, Jian Xu, Ningning Wang, Hao Hu, B. M. A. Rahman, Zhiping Zhou, Jianping Chen
The optical memristive switches are electrically activated optical switches that can memorize the current state. They can be used as optical latching switches in which the switching state is changed only by applying an electrical Write/Erase pulse and maintained without external power supply. We demonstrate an optical memristive switch based on a silicon MMI structure covered with nanoscale-size Ge2Sb2Te5 (GST) material on top. The phase change of GST is triggered by resistive heating of the silicon layer beneath GST with an electrical pulse. Experimental results reveal that the optical transmissivity can be tuned in a controllable and repeatable manner with the maximum transmission contrast exceeding 20 dB. Partial crystallization of GST is obtained by controlling the width and amplitude of the electric pulses. Crucially, we also demonstrate that both Erase and Write operations, to and from any intermediate level, are possible with accurate control of the electrical pulses. Our work marks a significant step forward towards realizing photonic memristive switches without static power consumption, which are highly demanded in high-density large-scale integrated photonics.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC