Optica Open
Browse

Monolithic Integration of Embedded III-V Lasers on SOI

Download (5.58 kB)
Version 2 2023-06-08, 12:56
Version 1 2023-01-12, 15:52
preprint
posted on 2023-06-08, 12:56 authored by Wen Qi Wei, An He, Bo Yang, Jing-Zhi Huang, Dong Han, Min Ming, Zi Hao Wang, Xuhan Guo, Yikai Su, Jian Jun Zhang, Ting Wang
Silicon photonic integration has gained great success in many application fields owing to the excellent optical device properties and complementary metal-oxide semiconductor (CMOS) compatibility. Realizing monolithic integration of III-V lasers and silicon photonic components on single silicon wafer is recognized as a long-standing obstacle for ultra-dense photonic integration, which can provide considerable economical, energy efficient and foundry-scalable on-chip light sources, that has not been reported yet. Here, we demonstrate embedded InAs/GaAs quantum dot (QD) lasers directly grown on trenched silicon-on-insulator (SOI) substrate, enabling monolithic integration with butt-coupled silicon waveguides. By utilizing the patterned grating structures inside pre-defined SOI trenches and unique epitaxial method via molecular beam epitaxy (MBE), high-performance embedded InAs QD lasers with out-coupled silicon waveguide are achieved on such template. By resolving the epitaxy and fabrication challenges in such monolithic integrated architecture, embedded III-V lasers on SOI with continuous-wave lasing up to 85 oC are obtained. The maximum output power of 6.8 mW can be measured from the end tip of the butt-coupled silicon waveguides, with estimated coupling efficiency of approximately -7.35 dB. The results presented here provide a scalable and low-cost epitaxial method for realization of on-chip light sources directly coupling to the silicon photonic components for future high-density photonic integration.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC