Optica Open
Browse
- No file added yet -

Multifunctional Resonant Wavefront-Shaping Meta-Optics Based on Multilayer and Multi-Perturbation Nonlocal Metasurfaces

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:34 authored by Stephanie C. Malek, Adam C. Overvig, Andrea Alù, Nanfang Yu
Photonic devices rarely provide both elaborate spatial control and sharp spectral control over an incoming wavefront. In optical metasurfaces, for example, the localized modes of individual meta-units govern the wavefront shape over a broad bandwidth, while nonlocal lattice modes extended over many unit cells support high quality-factor resonances. Here, we experimentally demonstrate nonlocal dielectric metasurfaces in the near-infrared that offer both spatial and spectral control of light, realizing metalenses focusing light exclusively over a narrowband resonance while leaving off-resonant frequencies unaffected. Our devices attain this functionality by supporting a quasi-bound state in the continuum encoded with a spatially varying geometric phase. We leverage this capability to experimentally realize a versatile platform for multispectral wavefront shaping where a stack of metasurfaces, each supporting multiple independently controlled quasi-bound states in the continuum, molds the optical wavefront distinctively at multiple wavelengths and yet stay transparent over the rest of the spectrum. Such a platform is scalable to the visible for applications in augmented reality and transparent displays.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC