Optica Open
Browse
arXiv.svg (5.58 kB)

Multimode optically adiabatic silica glass submicron taper

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:36 authored by Chang Kyun Ha, Kee Hwan Nam, Myeong Soo Kang
Silica nanofibers fabricated by tapering optical fibers have attracted considerable interest as an ultimate platform for high-efficiency light-matter interactions. While previously demonstrated applications relied exclusively on the low-loss transmission of only the fundamental mode, the implementation of multimode tapers that adiabatically transmit several modes has remained very challenging, hindering their use in various emerging applications in multimode nonlinear optics and quantum optics. Here, we report the first realization of multimode submicron tapers that permit the simultaneous adiabatic transmission of multiple higher-order modes including the LP02 mode, through introducing deep wet-etching of conventional fiber before fiber tapering. Furthermore, as a critical application, we demonstrate 'fundamental-to-fundamental' all-fiber third-harmonic generation with high conversion efficiencies. Our work paves the way for ultrahigh-efficiency multimode nonlinear and quantum optics, facilitating nonclassical light generation in the multimode regime, multimode soliton interactions and photonic quantum gates, and manipulation of the evanescent-field-induced optical trapping potentials of atoms and nanoparticles.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC