arXiv.svg (5.58 kB)

# Multipartite entanglement and secret key distribution in quantum networks

preprint

posted on 2023-11-30, 19:21 authored by Masahiro Takeoka, Eneet Kaur, Wojciech Roga, Mark M. WildeDistribution and distillation of entanglement over quantum networks is a basic task for Quantum Internet applications. A fundamental question is then to determine the ultimate performance of entanglement distribution over a given network. Although this question has been extensively explored for bipartite entanglement-distribution scenarios, less is known about multipartite entanglement distribution. Here we establish the fundamental limit of distributing multipartite entanglement, in the form of GHZ states, over a quantum network. In particular, we determine the multipartite entanglement distribution capacity of a quantum network, in which the nodes are connected through lossy bosonic quantum channels. This setting corresponds to a practical quantum network consisting of optical links. The result is also applicable to the distribution of multipartite secret key, known as common key, for both a fully quantum network and trusted-node based quantum key distribution network. Our results set a general benchmark for designing a network topology and network quantum repeaters (or key relay in trusted nodes) to realize efficient GHZ state/common key distribution in both fully quantum and trusted-node-based networks. We show an example of how to overcome this limit by introducing a network quantum repeater. Our result follows from an upper bound on distillable GHZ entanglement introduced here, called the "recursive-cut-and-merge" bound, which constitutes major progress on a longstanding fundamental problem in multipartite entanglement theory. This bound allows for determining the distillable GHZ entanglement for a class of states consisting of products of bipartite pure states.