posted on 2023-06-02, 16:01authored byTengfei Wu, Marc Guillon, Gilles Tessier, Pascal Berto
In astronomy or biological imaging, refractive index inhomogeneities of e.g. atmosphere or tissues induce optical aberrations which degrade the desired information hidden behind the medium. A standard approach consists in measuring these aberrations with a wavefront sensor (e.g Shack-Hartmann) located in the pupil plane, and compensating them either digitally or by adaptive optics with a wavefront shaper. However, in its usual implementation this strategy can only extract aberrations within a single isoplanatic patch, i.e. a region where the aberrations remain correlated. This limitation severely reduces the effective field-of-view in which the correction can be performed. Here, we propose a new wavefront sensing method capable of measuring, in a single shot, various pupil aberrations corresponding to multiple isoplanatic patches. The method, based on a thin diffuser (i.e a random phase mask), exploits the dissimilarity between different speckle regions to multiplex several wavefronts incoming from various incidence angles. We present proof-of-concept experiments carried out in wide-field fluorescence microscopy. A digital deconvolution procedure in each isoplanatic patch yields accurate aberration correction within an extended field-of-view. This approach is of interest for adaptive optics applications as well as diffractive optical tomography.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.