Optica Open
Browse
arXiv.svg (5.58 kB)

Multipole analysis of substrate-supported dielectric nanoresonator arrays with T-matrix method

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:58 authored by Krzysztof M. Czajkowski, Maria Bancerek, Tomasz J. Antosiewicz
Substrates, and layered media in general, are ubiquitous, affect the properties of whatever is in their vicinity, and their influence is, in an arbitrary framework, challenging to quantify analytically, especially for large arrays which escape explicit numerical treatment due to the computational burden. In this work, we develop a versatile T-matrix based framework in which we generalize the coupled multipole model towards arbitrarily high multipole orders and substrate-supported arrays. It allows us to study substrate-supported random/amorphous arrays of high index dielectric nanoparticles which are of wide interest due to relatively low losses and a highly tunable optical response, making them promising elements for nanophotonic devices. We discuss how multipole coupling rules evolve in the presence of a substrate in amorphous arrays for three interaction mechanisms: direct coupling between particles, substrate-mediated interparticle coupling and substrate-mediated self-coupling. We show the interplay between array density, distance from the substrate and its refractive in determining the optical response of an array. As an example, we use this framework to analyze refractometric sensing with substrate-supported arrays and demonstrate that the substrate plays a crucial role in determining the array sensitivity.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC