Optica Open
Browse
arXiv.svg (5.58 kB)

Multispectral large-area X-ray imaging enabled by stacked multilayer scintillators

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:48 authored by Peng Ran, Lurong Yang, Tingming Jiang, Xuehui Xu, Juan Hui, Yirong Su, Cuifang Kuang, Xu Liu, Yang
Conventional energy-integration black-white X-ray imaging lacks spectral information of X-ray photons. Although X-ray spectra (energy) can be distinguished by photon-counting technique typically with CdZnTe detectors, it is very challenging to be applied to large-area flat-panel X-ray imaging (FPXI). Herein, we design multi-layer stacked scintillators of different X-ray absorption capabilities and scintillation spectrums, in this scenario, the X-ray energy can be discriminated by detecting the emission spectra of each scintillator, therefore the multispectral X-ray imaging can be easily obtained by color or multispectral visible-light camera in one single shot of X-ray. To verify this idea, stacked multilayer scintillators based on several emerging metal halides were fabricated in the cost-effective and scalable solution process, and proof-of-concept multi-energy FPXI were experimentally demonstrated. The dual-energy X-ray image of a bone-muscle model clearly showed the details that were invisible in conventional energy-integration FPXI. By stacking four layers of specifically designed multilayer scintillators with appropriate thicknesses, a prototype FPXI with four energy channels was realized, proving its extendibility to multispectral or even hyperspectral X-ray imaging. This study provides a facile and effective strategy to realize energy-resolved flat-panel X-ray imaging.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC