Optica Open
Browse

Natural Hyperbolicity of Hexagonal Boron Nitride in the Deep Ultraviolet

Download (5.58 kB)
preprint
posted on 2025-08-12, 04:10 authored by Bongjun Choi, Jason Lynch, Wangleong Chen, Seong-Joon Jeon, Hyungseob Cho, Kyungmin Yang, Jonghwan Kim, Nader Engheta, Deep Jariwala
Hyperbolic media enable unique optical phenomena including hyperlensing, negative refraction, enhanced photonic density of states (PDOS), and highly confined polaritons. While most hyperbolic media are artificially engineered metamaterials, certain natural materials with extreme anisotropy can exhibit hyperbolic dispersion. Here, we report the first observation of natural hyperbolic dispersion in hexagonal boron nitride (hBN) in the deep-ultraviolet (DUV) regime, induced by strong, anisotropic exciton resonances. Using imaging spectroscopic ellipsometry (ISE), we characterize the complex dielectric function along in-plane and out-of-plane directions down to 190 nm (6.53 eV), revealing a type-II hyperbolic window in the DUV regime. This hyperbolicity supports hyperbolic exciton polaritons (HEP) with high directionality and slow group velocity. Our findings establish hBN as a promising platform for nanophotonic applications in the technologically significant DUV spectral range.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC