Optica Open
Browse

Near-field light-bending photonic switch: physics of switching based on three-dimensional Poynting vector analysis

Download (5.58 kB)
preprint
posted on 2023-01-12, 13:54 authored by Liyang Yue, Zengbo Wang, Bing Yan, Yao Xie, Y. E. Geints, Oleg V. Minin, Igor V. Minin
Photonic hook is a high-intensity bent light focus with a proportional curvature to the wavelength of the incident light. Based on this unique light-bending phenomenon, a novel near-field photonic switch by means of a right-trapezoid dielectric Janus particle-lens embedded in the core of a planar waveguide is proposed for switching the photonic signals at two common optical communication wavelengths 1310 nm and 1550 nm by using numerical simulations. The signals at these two wavelengths can be guided to different routes according to their oppositely bent photonic hooks to realise wavelength selective switching. The switching mechanism is analysed by an in-house developed three-dimensional (3D) Poynting vector visualisation technology. It demonstrates that the 3D distribution and number of Poynting vector vortexes produced by the particle highly affect the shapes and bending directions of the photonic hooks causing the near-field switching, and multiple independent high-magnitude areas matched by the regional Poynting vector streamlines can form these photonic hooks. The corresponding mechanism can only be represented by 3D Poynting vector distributions and is being reported for the first time.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC