Optica Open
Browse

Near-field optical mode engineering-enabled freeform nonlocal metasurfaces

Download (5.58 kB)
preprint
posted on 2025-08-12, 04:00 authored by Zhongjun Jiang, Tianxiang Dai, Shuwei Guo, Soyaib Sohag, Yixuan Shao, Chenkai Mao, Andrea Alù, Jonathan A. Fan, You Zhou
Nanophotonic technologies inherently rely on tailoring light-matter interactions through the excitation and interference of deeply confined optical resonances. However, existing concepts in optical mode engineering remain heuristic and are challenging to extend towards complex and multi-functional resonant phenomena. Here, we introduce an inverse design framework that optimizes near-field distributions, ideally suited to tailor Mie-type modes within dielectric nanophotonic structures, and we demonstrate its powerful opportunities to facilitate the discovery of new classes of nonlocal metasurfaces. We show that freeform nonlocal metasurfaces supporting accidental bound states in the continuum can be readily optimized to tackle tailored illumination conditions, modal properties and quality factors. We further extend our approach to multifunctional and multipolar mode engineering, and experimentally demonstrate freeform planar nonlocal multi-wavelength and chiral metasurfaces. Our versatile and robust framework for freeform mode engineering has applications in a broad range of high quality-factor metasurface platforms relevant to sensing, nonlinear optics, optomechanics and quantum information processing.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC