posted on 2023-11-30, 19:50authored byPinlei Lu, Saeed Khan, Tzu-Chiao Chien, Xi Cao, Olivia T. Lanes, Chao Zhou, Hakan E. Türeci, Michael J. Hatridge
While coherently-driven Kerr microcavities have rapidly matured as a platform for frequency comb formation, such microresonators generally possess weak Kerr coefficients; consequently, triggering comb generation requires millions of photons to be circulating inside the cavity. This suppresses the role of quantum fluctuations in the comb's dynamics. In this paper, we realize a minimal version of coherently-driven Kerr-mediated microwave frequency combs in the circuit QED architecture, where the quantum vacuum's fluctuations are the primary limitation on comb coherence. We achieve a comb phase coherence of up to 35~$\mu$s, approaching the theoretical device quantum limit of 55~$\mu$s, and vastly longer than the modes' inherent lifetimes of 13~ns. The ability within cQED to engineer stronger nonlinearities than optical microresonators, together with operation at cryogenic temperatures, and excellent agreement of comb dynamics with quantum theory indicates a promising platform for the study of complex dynamics of quantum nonlinear systems