Optica Open
Browse
- No file added yet -

Neural Nano-Optics for High-quality Thin Lens Imaging

Download (5.58 kB)
preprint
posted on 2023-01-11, 22:06 authored by Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-Hwan Baek, Arka Majumdar, Felix Heide
Nano-optic imagers that modulate light at sub-wavelength scales could unlock unprecedented applications in diverse domains ranging from robotics to medicine. Although metasurface optics offer a path to such ultra-small imagers, existing methods have achieved image quality far worse than bulky refractive alternatives, fundamentally limited by aberrations at large apertures and low f-numbers. In this work, we close this performance gap by presenting the first neural nano-optics. We devise a fully differentiable learning method that learns a metasurface physical structure in conjunction with a novel, neural feature-based image reconstruction algorithm. Experimentally validating the proposed method, we achieve an order of magnitude lower reconstruction error. As such, we present the first high-quality, nano-optic imager that combines the widest field of view for full-color metasurface operation while simultaneously achieving the largest demonstrated 0.5 mm, f/2 aperture.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC