Optica Open
Browse
arXiv.svg (5.58 kB)

Non-Hermitian Photonics based on Charge-Parity Symmetry

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:13 authored by Junpeng Hou, Zhitong Li, Qing Gu, Chuanwei Zhang
Parity-time ($\mathcal{PT}$) symmetry, originally conceived for non-Hermitian open quantum systems, has opened an excitingly new avenue for the coherent control of light. By tailoring optical gain and loss in integrated photonic structures, $\mathcal{PT}$ symmetric non-Hermitian photonics has found applications in many fields ranging from single mode lasing to novel topological matters. Here we propose a new paradigm towards non-Hermitian photonics based on the charge-parity ($\mathcal{CP}$) symmetry that has the potential to control the flow of light in an unprecedented way. In particular, we consider continuous dielectric chiral materials, where the charge conjugation and parity symmetries are broken individually, but preserved jointly. Surprisingly, the phase transition between real and imaginary spectra across the exceptional point is accompanied by a dramatic change of the photonic band topology from dielectric to hyperbolic. We showcase broad applications of $\mathcal{CP}$ symmetric photonics such as all-angle polarization-dependent negative refraction materials, enhanced spontaneous emission for laser engineering, and non-Hermitian topological photonics. The $\mathcal{CP}$ symmetry opens an unexplored pathway for studying non-Hermitian photonics without optical gain/loss by connecting two previously distinct material properties: chirality and hyperbolicity, therefore providing a powerful tool for engineering many promising applications in photonics and other related fields.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC