Optica Open
Browse
arXiv.svg (5.58 kB)

Non-Hermitian adiabatic transport in spaces of exceptional points

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:19 authored by J. Höller, N. Read, J. G. E. Harris
We consider the space of $n \times n$ non-Hermitian Hamiltonians ($n=2$, $3$, . . .) that are equivalent to a single $n\times n$ Jordan block. We focus on adiabatic transport around a closed path (i.e. a loop) within this space, in the limit as the time-scale $T=1/\varepsilon$ taken to traverse the loop tends to infinity. We show that, for a certain class of loops and a choice of initial state, the state returns to itself and acquires a complex phase that is $\varepsilon^{-1}$ times an expansion in powers of $\varepsilon^{1/n}$. The exponential of the term of $n$th order (which is equivalent to the "geometric" or Berry phase modulo $2\pi$), is thus independent of $\varepsilon$ as $\varepsilon\to0$; it depends only on the homotopy class of the loop and is an integer power of $e^{2\pi i/n}$. One of the conditions under which these results hold is that the state being transported is, for all points on the loop, that of slowest decay.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC