Optica Open
Browse
- No file added yet -

Non-Hermitian boundary spectral winding

Download (5.58 kB)
preprint
posted on 2023-01-10, 03:05 authored by Zuxuan Ou, Yucheng Wang, Linhu Li
Spectral winding of complex eigenenergies represents a topological aspect unique in non-Hermitian systems, which vanishes in one-dimensional (1D) systems under the open boundary conditions (OBC). In this work, we discover a boundary spectral winding in two-dimensional non-Hermitian systems under the OBC, originating from the interplay between Hermitian boundary localization and non-Hermitian non-reciprocal pumping. Such a nontrivial boundary topology is demonstrated in a non-Hermitian breathing Kagome model with a triangle geometry, whose 1D boundary mimics a 1D non-Hermitian system under the periodic boundary conditions with nontrivial spectral winding. In a trapezoidal geometry, such a boundary spectral winding can even co-exist with corner accumulation of edge states, instead of extended ones along 1D boundary of a triangle geometry. An OBC type of hybrid skin-topological effect may also emerge in a trapezoidal geometry, provided the boundary spectral winding completely vanishes. By studying the Green's function, we unveil that the boundary spectral winding can be detected from a topological response of the system to a local driving field, offering a realistic method to extract the nontrivial boundary topology for experimental studies.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC