Optica Open
Browse

Non-Hermitian topological mobility edges and transport in photonic quantum walks

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:44 authored by Stefano Longhi
In non-Hermitian quasicrystals, mobility edges (ME) separating localized and extended states in complex energy plane can arise as a result of non-Hermitian terms in the Hamiltonian. Such ME are of topological nature, i.e. the energies of localized and extended states exhibit distinct topological structures in the complex energy plane. However, depending on the origin of non-Hermiticity, i.e. asymmetry of hopping amplitudes or complexification of the incommensurate potential phase, different winding numbers are introduced, corresponding to different transport features in the bulk of the lattice: while ballistic transport is allowed in the former case, pseudo dynamical localization is observed in the latter case. The results are illustrated by considering non-Hermitian photonic quantum walks in synthetic mesh lattices.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC