posted on 2025-05-17, 16:00authored byS. J. Sun, Z. Y. Li, C. Cui, Shuang Xu, H. Z. Shen
The non-Markovian effects of open quantum systems subjected to external environments are deemed to be valuable resources in quantum optics and quantum information processing. In this work, we investigate the non-Markovian dynamics of a three-level giant atom coupling with a semi-infinite photonic waveguide through multiple coupling points and driven by a classical driving field. We derive the analytical expressions for the probability amplitudes of the driven three-level giant atom and obtain two independent conditions. We find two different types of bound states (including the static bound states and the periodic equal-amplitude oscillating bound states) and discuss the physical origins of the bound states formation. Moreover, we discuss the case of the driven three-level giant atom interacting with the infinite photonic waveguide, where there is only one purely imaginary solution (i.e., only one bound state condition exists) for its complex frequency (coming from the absence of mirror at one end of the waveguide) compared to that of a driven three-level giant atom coupling with a semi-infinite photonic waveguide. With this, we also find two different types of bound states, including the static bound state and the periodic equal-amplitude oscillating bound states. Finally, the above results are generalized to a more general model involving a semi-infinite photonic waveguide coupling with an arbitrary number of noninteracting three-level giant atoms driven by the driving fields. The proposed protocol could provide a pathway to precisely elucidate the non-Markovian dynamics of driven, multi-level giant atoms coupled to semi-infinite or infinite photonic waveguides.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.