Optica Open
Browse
arXiv.svg (5.58 kB)

Non-invasive dynamic or wide-field imaging through opaque layers and around corners

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:43 authored by Yuan Yuan, Hui Chen
In turbid media, scattering of light scrambles information of the incident beam and represents an obstacle to optical imaging. Noninvasive imaging through opaque layers is challenging for dynamic and wide-field objects due to unreliable image reconstruction processes. We here propose a new perspective to solve these problems: rather than using the full point-spread-function (PSF), the wave distortions in scattering layers can be characterized with only the phase of the optical-transfer-function (OTF, the Fourier transform of PSF), with which diffraction-limit images can be analytically solved. We then develop a method that exploits the redundant information dynamic objects, and can reliably and rapidly recover OTFs' phases within several iterations. It enables not only noninvasive video imaging at 25 ~ 200 Hz of a moving object hidden inside turbid media, but also imaging under weak illumination that is inaccessible with previous methods. Furthermore, by scanning a localized illumination on the object plane, we propose a wide-field imaging approach, with which we demonstrate an application where a photoluminescent sample hidden behind four-layers of opaque polythene films is imaged with a modified multi-photon excitation microscopy setup.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC