Optica Open
Browse
- No file added yet -

Non-invasive light focusing in scattering media using speckle variance optimization

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:31 authored by Antoine Boniface, Baptiste Blochet, Jonathan Dong, Sylvain Gigan
Optical imaging deep inside scattering media remains a fundamental problem in bio-imaging. While wavefront shaping has been shown to allow focusing of coherent light at depth, achieving it non-invasively remains a challenge. Various feedback mechanisms, in particular acoustic or non-linear fluorescence-based, have been put forward for this purpose. Non-invasive focusing at depth on fluorescent objects with linear excitation is, however, still unresolved. Here we report a simple method for focusing inside a scattering medium in an epi-detection geometry with a linear signal: optimizing the spatial variance of low contrast speckle patterns emitted by a set of fluorescent sources. Experimentally, we demonstrate robust and efficient focusing of scattered light on a single source, and show that this variance optimization method is formally equivalent to previous optimization strategies based on two-photon fluorescence. Our technique should generalize to a large variety of incoherent contrast mechanisms and holds interesting prospects for deep bio-imaging.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC