Optica Open
Browse

Non-perturbative cathodoluminescence microscopy of beam-sensitive materials

Download (5.58 kB)
preprint
posted on 2024-12-18, 17:00 authored by Malcolm Bogroff, Gabriel Cowley, Ariel Nicastro, David Levy, Yueh-Chun Wu, Nannan Mao, Tilo H. Yang, Tianyi Zhang, Jing Kong, Rama Vasudevan, Kyle P. Kelley, Benjamin J. Lawrie
Cathodoluminescence microscopy is now a well-established and powerful tool for probing the photonic properties of nanoscale materials, but in many cases, nanophotonic materials are easily damaged by the electron-beam doses necessary to achieve reasonable cathodoluminescence signal-to-noise ratios. Two-dimensional materials have proven particularly susceptible to beam-induced modifications, yielding both obstacles to high spatial-resolution measurement and opportunities for beam-induced patterning of quantum photonic systems. Here pan-sharpening techniques are applied to cathodoluminescence microscopy in order to address these challenges and experimentally demonstrate the promise of pan-sharpening for minimally-perturbative high-spatial-resolution spectrum imaging of beam-sensitive materials.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC