Optica Open
Browse

Non-volatile Tuning of Cryogenic Optical Resonators

Download (5.58 kB)
preprint
posted on 2024-10-15, 16:00 authored by Uthkarsh Adya, Rui Chen, I-Tung Chen, Sanskriti Joshi, Arka Majumdar, Mo Li, Sajjad Moazeni
Quantum computing, ultra-low-noise sensing, and high-energy physics experiments often rely on superconducting circuits or semiconductor qubits and devices operating at deep cryogenic temperatures (4K and below). Photonic integrated circuits and interconnects have been demonstrated for scalable communications and optical domain transduction in these systems. Due to energy and area constraints, many of these devices need enhanced light-matter interaction, provided by photonic resonators. A key challenge, however, for using these resonators is the sensitivity of resonance wavelength to process variations and thermal fluctuations. While thermo-optical tuning methods are typically employed at room temperature to mitigate this problem, the thermo-optic effect is ineffective at 4K. To address this issue, we demonstrate a non-volatile approach to tune the resonance of photonic resonators using integrated phase-change materials (PCMs) at cryogenic temperatures. In this work, we report a 10Gb/s free-carrier dispersion based resonant photonic modulator that can be tuned in a non-volatile fashion at sub-4K temperatures using a commercial silicon photonics process. This method paves the way for realizing scalable cryogenic integrated photonics with thousands of resonant devices for quantum and high-energy physics applications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC