Optica Open
Browse
arXiv.svg (5.58 kB)

Nonlinear quantum logic with colliding graphene plasmons

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:50 authored by Giuseppe Calajò, Philipp K. Jenke, Lee A. Rozema, Philip Walther, Darrick E. Chang, Joel D. Cox
Graphene has emerged as a promising platform to bring nonlinear quantum optics to the nanoscale, where a large intrinsic optical nonlinearity enables long-lived and actively tunable plasmon polaritons to strongly interact. Here we theoretically study the collision between two counter-propagating plasmons in a graphene nanoribbon, where transversal subwavelength confinement endows propagating plasmons with %large effective masses a flat band dispersion that enhances their interaction. This scenario presents interesting possibilities towards the implementation of multi-mode polaritonic gates that circumvent limitations imposed by the Shapiro no-go theorem for photonic gates in nonlinear optical fibers. As a paradigmatic example we demonstrate the feasibility of a high fidelity conditional Pi phase shift (CZ), where the gate performance is fundamentally limited only by the single-plasmon lifetime. These results open new exciting avenues towards quantum information and many-body applications with strongly-interacting polaritons.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports