Optica Open
Browse
arXiv.svg (5.58 kB)

Nonlinear symmetry breaking of Aharonov-Bohm cages

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:23 authored by Goran Gligorić, Petra P. Beličev, Daniel Leykam, Aleksandra Maluckov
We study the influence of mean field cubic nonlinearity on Aharonov-Bohm caging in a diamond lattice with synthetic magnetic flux. For sufficiently weak nonlinearities the Aharonov-Bohm caging persists as periodic nonlinear breathing dynamics. Above a critical nonlinearity, symmetry breaking induces a sharp transition in the dynamics and enables stronger wavepacket spreading. This transition is distinct from other flatband networks, where continuous spreading is induced by effective nonlinear hopping or resonances with delocalized modes, and is in contrast to the quantum limit, where two-particle hopping enables arbitrarily large spreading. This nonlinear symmetry breaking transition is readily observable in femtosecond laser-written waveguide arrays.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC