Optica Open
Browse

Nonlocal, Flat Band Meta-optics for Monolithic, High Efficiency, Compact Photodetectors

Download (5.58 kB)
preprint
posted on 2023-12-13, 17:00 authored by Minho Choi, Christopher Munley, Johannes E. Froech, Rui Chen, Arka Majumdar
Miniaturized photodetectors are becoming increasingly sought-after components for a range of next generation technologies, such as autonomous vehicles, integrated wearable devices, or gadgets embedded in the Internet of Things. A major challenge, however, lies in shrinking the device footprint, while maintaining high efficiency. This conundrum can be solved by realizing non-trivial relation between the energy and momentum of photons, such as dispersion-free angle-independent devices, known as flat bands. Here, we leverage flat band meta-optics to simultaneously achieve critical absorption over a wide range of incidence angles. For a monolithic silicon meta-optical photodiode, we achieved ~10-fold enhancement in the photon-to-electron conversion efficiency. Such enhancement over a large angular range of ~36 degrees allows incoming light to be collected via a large aperture lens and focused on a compact photodiode, potentially enabling high-speed and low-light operation. Our research unveils new possibilities for creating compact and efficient optoelectronic devices with far-reaching impact on various applications, including augmented reality and light detection and ranging.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC