Optica Open
Browse

Numerical modelling of the coupling efficiency of single quantum emitters in photonic-crystal waveguides

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:08 authored by Alisa Javadi, Sahand Mahmoodian, Immo Söllner, Peter Lodahl
Planar photonic nanostructures have recently attracted a great deal of attention for quantum optics applications. In this article, we carry out full 3D numerical simulations to fully account for all radiation channels and thereby quantify the coupling efficiency of a quantum emitter embedded in a photonic-crystal waveguide. We utilize mixed boundary conditions by combining active Dirichlet boundary conditions for the guided mode and perfectly-matched layers for the radiation modes. In this way, the leakage from the quantum emitter to the surrounding environment can be determined and the spectral and spatial dependence of the coupling to the radiation modes can be quantified. The spatial maps of the coupling efficiency, the $\beta$-factor, reveal that even for moderately slow light, near-unity $\beta$ is achievable that is remarkably robust to the position of the emitter in the waveguide. Our results show that photonic-crystal waveguides constitute a suitable platform to achieve deterministic interfacing of a single photon and a single quantum emitter, which has a range of applications for photonic quantum technology.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC