posted on 2023-11-30, 17:22authored byHengyun Zhou, Chao Peng, Yoseob Yoon, Chia Wei Hsu, Keith A. Nelson, Liang Fu, John D. Joannopoulos, Marin Soljacic, Bo Zhen
The ideas of topology have found tremendous success in Hermitian physical systems, but even richer properties exist in the more general non-Hermitian framework. Here, we theoretically propose and experimentally demonstrate a new topologically-protected bulk Fermi arc which---unlike the well-known surface Fermi arcs arising from Weyl points in Hermitian systems---develops from non-Hermitian radiative losses in photonic crystal slabs. Moreover, we discover half-integer topological charges in the polarization of far-field radiation around the Fermi arc. We show that both phenomena are direct consequences of the non-Hermitian topological properties of exceptional points, where resonances coincide in their frequencies and linewidths. Our work connects the fields of topological photonics, non-Hermitian physics and singular optics, and paves the way for future exploration of non-Hermitian topological systems.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.