Optica Open
Browse
arXiv.svg (5.58 kB)

Observation of Distinct Phase Transitions in a Nonlinear Optical Ising Machine

Download (5.58 kB)
preprint
posted on 2023-01-10, 02:48 authored by Santosh Kumar, Zhaotong Li, Ting Bu, Chunlei Qu, Yuping Huang
Optical Ising machines promise to solve complex optimization problems with an optical hardware acceleration advantage. Here we study the ground state properties of a nonlinear optical Ising machine realized by spatial light modulator, Fourier optics, and second harmonic generation in a nonlinear crystal. By tuning the ratio of the light intensities at the fundamental and second harmonic frequencies, we experimentally observe two distinct ferromagnetic-to-paramagnetic phase transitions: a second-order phase transition where the magnetization changes to zero continuously and a first-order phase transition where the magnetization drops to zero abruptly as the effective temperature increases. Our experimental results are corroborated by a numerical simulation based on the Monte Carlo Metropolis-Hastings algorithm, and the physical mechanism for the distinct phase transitions can be understood with a mean-field theory. Our results showcase the great flexibility of the nonlinear optical Ising machine, which may find important potential applications in solving combinatorial optimization problems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC