Optica Open
arXiv.svg (5.58 kB)

Observation of Majorana Plasmon by Molecular Topological Superconductor and Its Topological SPASER

Download (5.58 kB)
posted on 2023-01-11, 21:49 authored by Kyoung Hwan Choi, Dong Hack Suh
Plasmons, quantized collective oscillations of electrons, have been observed in metals and semiconductors. Such massive electrons have been the basic ingredients of research in plasmonics and optical metamaterials.1 Also, Dirac plasmons have been observed in graphene, two-dimensional electron systems and topological insulators (TIs). A nontrivial Z2 topology of the bulk valence band leads to the emergence of massless Dirac fermions on the surface in TIs.2,3 Although Dirac plasmons can be formed through additional grating or patterning, their characteristics promise novel plasmonic metamaterials that are tunable in the terahertz and mid-infrared frequency ranges.4 Recently, the Majorana fermions have been verified through various kinds of topological superconductors(TSCs). In particular, the quantized and paired spin waves have been discovered in polyaromatic hydrocarbons(PAHs)5 and Majorana hinge and corner modes have been identified in the organic crystal of PAHs. Interestingly, regularity and periodicity can serve in the xy-plane of the crystal as the patterning of TSC resonators. Here, first we report experimental evidence of Majorana plasmonic excitations in a molecular topological superconductor (MTSC). It was prepared from MTSC resonators with different stacked numbers of HYLION-12. Distributing carriers into multiple MTSC resonators enhance the plasmonic resonance frequency and magnitude, which is different from the effects in a conventional semiconductor superlattice.6,7 The direct results of the unique carrier density scaling law of the resonance of massless Majorana fermions is demonstrated. Moreover, topological surface plasmon amplification by stimulated emission of radiation (SPASER) is also firstly created from the MTSC resonator. It has two mutually time-reversed chiral surface plasmon modes carrying the opposite topological charges.



This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics




    Ref. manager