Optica Open
Browse

Observation of light propagation through a three-dimensional cavity superlattice in a 3D photonic band gap

Download (5.58 kB)
preprint
posted on 2023-03-30, 16:01 authored by Manashee Adhikary, Marek Kozon, Ravitej Uppu, Willem L. Vos
We experimentally investigate unusual light propagation inside a three-dimensional (3D) superlattice of resonant cavities that are confined within a 3D photonic band gap. Therefore, we fabricated 3D diamond-like photonic crystals from silicon with a broad 3D band gap in the near-infrared and doped them with a periodic array of point defects. In position-resolved reflectivity and scattering microscopy, we observe narrow spectral features that match well with superlattice bands in band structures computed with the plane wave expansion. The cavities are coupled in all three dimensions when they are closely spaced and uncoupled when they are further apart. The superlattice bands correspond to light that hops in high symmetry directions in 3D - so-called Cartesian Light - that opens applications in 3D photonic networks, 3D Anderson localization of light, and future 3D quantum photonic networks.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC