Optica Open
Browse

Observation of tunable charged exciton polaritons in hybrid monolayer WS2 $-$ plasmonic nanoantenna system

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:07 authored by Jorge Cuadra, Denis G. Baranov, Martin Wersäll, Ruggero Verre, Tomasz J. Antosiewicz, Timur Shegai
Formation of dressed light-matter states in optical structures, manifested as Rabi splitting of the eigen energies of a coupled system, is one of the key effects in quantum optics. In pursuing this regime with semiconductors, light is usually made to interact with excitons $-$ electrically neutral quasiparticles of semiconductors, meanwhile interactions with charged three-particle states $-$ trions $-$ have received little attention. Here, we report on strong interaction between plasmons in silver nanoprisms and charged excitons $-$ trions $-$ in monolayer tungsten disulphide (WS$_{2}$). We show that the plasmon-exciton interactions in this system can be efficiently tuned by controlling the charged versus neutral exciton contribution to the coupling process. In particular, we show that a stable trion state emerges and couples efficiently to the plasmon resonance at low temperature by forming three bright intermixed plasmon-exciton-trion polariton states. Our findings open up a possibility to exploit electrically charged trion polaritons $-$ previously unexplored mixed states of light and matter in nanoscale hybrid plasmonic systems.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC