posted on 2023-01-12, 15:07authored byNaoki Ichiji, Hibiki Kikuchi, Murat Yessenov, Kenneth L. Schepler, Ayman F. Abouraddy, Atsushi Kubo
Because surface plasmon polaritons (SPPs) are surface waves characterized by one free transverse dimension, the only monochromatic diffraction-free spatial profiles for SPPs are cosine and Airy waves. Pulsed SPP wave packets have been recently formulated that are propagation-invariant and localized in the in-plane dimensions by virtue of a tight spectral association between their spatial and temporal frequencies, which have thus been dubbed `space-time' (ST) SPPs. Because of the spatio-temporal spectral structure unique to ST-SPPs, the optimal launching strategy of such novel plasmonic field configurations remains an open question. We present here a critical step towards realizing ST-SPPs by reporting observations of ultrabroadband striped ST-SPPs. These are SPPs in which each wavelength travels at a prescribed angle with respect to the propagation axis to produce a periodic (striped) transverse spatial profile that is diffraction-free. We start with a free-space ST wave packet that is coupled to a ST-SPP at a gold-dielectric interface, and unambiguously identify the ST-SPP via an axial beating detected in two-photon fluorescence produced by the superposition of incident ST wave packet and the excited surface-bound ST-SPP. These results highlight a viable approach for efficient and reliable coupling to ST-SPPs, and thus represent the first crucial step towards realization of the full potential of ST-SPPs for plasmonic sensing and imaging.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.