Optica Open
Browse

On-chip low-loss all-optical MoSe$_2$ modulator

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:48 authored by Mohammed Alaloul, Jacob B Khurgin, Ibrahim Al-Ani, Khalil As'ham, Lujun Huang, Haroldo T Hattori, Andrey E Miroshnichenko
Monolayer transition metal dichalcogenides (TMDCs), like MoS$_2$, MoSe$_2$, WS$_2$, and WSe$_2$, feature direct bandgaps, strong spin-orbit coupling, and exciton-polariton interactions at the atomic scale, which could be harnessed for efficient light emission, valleytronics, and polaritonic lasing, respectively. Nevertheless, to build next-generation photonic devices that make use of these features, it is first essential to model the all-optical control mechanisms in TMDCs. Herein, a simple model is proposed to quantify the performance of a 35$\,$\textmu m long Si$_3$N$_4$ waveguide-integrated all-optical MoSe$_2$ modulator. Using this model, a switching energy of 14.6$\,$pJ is obtained for a transverse-magnetic (TM) and transverse-electric (TE) polarised pump signals at $\lambda =\,$480$\,$nm. Moreover, maximal extinction ratios of 20.6$\,$dB and 20.1$\,$dB are achieved for a TM and TE polarised probe signal at $\lambda =\,$500$\,$nm, respectively, with an ultra-low insertion loss of $<0.3\,$dB. Moreover, the device operates with an ultrafast recovery time of 50$\,$ps, while maintaining a high extinction ratio for practical applications. These findings facilitate modeling and designing novel TMDC-based photonic devices.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC