Optica Open
Browse

On-chip sampling of optical fields with attosecond resolution

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:33 authored by Mina R. Bionta, Felix Ritzkowsky, Marco Turchetti, Yujia Yang, Dario Cattozzo Mor, William P. Putnam, Franz X. Kärtner, Karl K. Berggren, Phillip D. Keathley
Time-domain sampling of arbitrary electric fields with sub-cycle resolution enables a complete time-frequency analysis of a system's response to electromagnetic illumination. This provides access to dynamic information that is not provided by absorption spectra alone, and has recently been shown through measurements in the infrared that time-domain optical-field sampling offers significant improvements with regard to molecular sensitivity and limits of detection compared to traditional spectroscopic methods. Despite the many scientific and technological motivations, time-domain, optical-field sampling systems operating in the visible to near-infrared spectral regions are seldom accessible, requiring large driving pulse energies, and large laser amplifier systems, bulky apparatuses, and vacuum environments. Here, we demonstrate an all-on-chip, optoelectronic device capable of sampling arbitrary, low-energy, near-infrared waveforms under ambient conditions. Our solid-state integrated detector uses optical-field-driven electron emission from resonant nanoantennas to achieve petahertz-level switching speeds by generating on-chip attosecond electron bursts. These bursts are used to probe the electric field of weak optical transients. We demonstrated our devices by sampling the electric field of a ~5 fJ, broadband near-infrared ultrafast laser pulse using a ~50 pJ near-infrared driving pulse. Our sampling measurements recovered the weak optical transient as well as localized plasmonic dynamics of the emitting nanoantennas $in~situ$. This field-sampling device--with its compact footprint and low pulse-energy requirements--offers opportunities in a variety of applications, including: broadband time-domain spectroscopy in the molecular fingerprint region, time-domain analysis of nonlinear phenomena, and detailed studies of strong-field light-matter interactions.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC