Optica Open
Browse

On Small Beams with Large Topological Charge II: Photons, Electrons and Gravitational Waves

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:07 authored by Mario Krenn, Anton Zeilinger
Beams of light with a large topological charge significantly change their spatial structure when they are focused strongly. Physically, it can be explained by an emerging electromagnetic field component in the direction of propagation, which is neglected in the simplified scalar wave picture in optics. Here we ask: Is this a specific photonic behavior, or can similar phenomena also be predicted for other species of particles? We show that the same modification of the spatial structure exists for relativistic electrons as well as for focused gravitational waves. However, this is for different physical reasons: For electrons, which are described by the Dirac equation, the spatial structure changes due to a Spin-Orbit coupling in the relativistic regime. In gravitational waves described with linearized general relativity, the curvature of space-time between the transverse and propagation direction leads to the modification of the spatial structure. Thus, this universal phenomenon exists for both massive and massless elementary particles with Spin 1/2, 1 and 2. It would be very interesting whether other types of particles such as composite systems (neutrons or C$_{60}$) or neutrinos show a similar behaviour and how this phenomenon can be explained in a unified physical way.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC