posted on 2024-10-26, 16:00authored byEmily Archer, Bangshan Sun, Roman Walczak, Martin Booth, Simon Hooker
Simultaneous space-time focusing (SSTF) is sometimes claimed to reduce the longitudinal extent of the high-intensity region near the focus, in contradiction to the original work on this topic. Here we seek to address this confusion by using numerical and analytical methods to investigate the degree of localisation of the spatio-temporal intensity of an SSTF pulse. The analytical method is found to be in excellent agreement with numerical calculations and yields, for bi-Gaussian input pulses, expressions for the three-dimensional spatio-temporal intensity profile of the SSTF pulse, and for the on-axis bandwidth, pulse duration, and pulse-front tilt (PFT) of the SSTF pulse. To provide further insight, we propose a method for determining the transverse input profile of a non-SSTF pulse with equivalent spatial focusing. We find that the longitudinal variations of the peak axial intensities of the SSTF and spatially equivalent (SE) pulses are the same, apart from a constant factor, and hence that SSTF does not constrain the region of high intensity more than a non-SSTF pulse with equivalent focusing. We demonstrate that one possible cause of confusion in the literature arises from the fact that a simplistic method for calculating the pulse intensity exaggerates the degree of intensity localisation, unless the spatio-temporal couplings inherent to SSTF pulses are accounted for.