posted on 2023-01-11, 22:14authored bySamarth Vadia, Johannes Scherzer, Holger Thierschmann, Clemens Schäfermeier, Claudio Dal Savio, Takashi Taniguchi, Kenji Watanabe, David Hunger, Khaled Karraï, Alexander Högele
The introduction of an optical resonator can enable efficient and precise interaction between a photon and a solid-state emitter. It facilitates the study of strong light-matter interaction, polaritonic physics and presents a powerful interface for quantum communication and computing. A pivotal aspect in the progress of light-matter interaction with solid-state systems is the challenge of combining the requirements of cryogenic temperature and high mechanical stability against vibrations while maintaining sufficient degrees of freedom for in-situ tunability. Here, we present a fiber-based open Fabry-P\'{e}rot cavity in a closed-cycle cryostat exhibiting ultra-high mechanical stability while providing wide-range tunability in all three spatial directions. We characterize the setup and demonstrate the operation with the root-mean-square cavity length fluctuation of less than $90$ pm at temperature of $6.5$ K and integration bandwidth of $100$ kHz. Finally, we benchmark the cavity performance by demonstrating the strong-coupling formation of exciton-polaritons in monolayer WSe$_2$ with a cooperativity of $1.6$. This set of results manifests the open-cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.