Optica Open
Browse

Optical Rotation of Levitated Spheres in High Vacuum

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:23 authored by Fernando Monteiro, Sumita Ghosh, Elizabeth C. van Assendelft, David C. Moore
A circularly polarized laser beam is used to levitate and control the rotation of microspheres in high vacuum. At low pressure, rotation frequencies as high as 6 MHz are observed for birefringent vaterite spheres, limited by centrifugal stresses. Due to the extremely low damping in high vacuum, controlled optical rotation of amorphous SiO$_2$ spheres is also observed at rates above several MHz. At $10^{-7}$ mbar, a damping time of $6\times10^4$ s is measured for a $10\ \mu$m diameter SiO$_2$ sphere. No additional damping mechanisms are observed above gas damping, indicating that even longer damping times may be possible with operation at lower pressure. The controlled optical rotation of microspheres at MHz frequencies with low damping, including for materials that are not intrinsically birefringent, provides a new tool for performing precision measurements using optically levitated systems.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC